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ABSTRACT: An ultraperformance liquid chromatography�quadrupole time-of-flight mass spectrometry (UPLC-Q-Tof MS)-
based metabolomic technique was applied for metabolite profiling of 60 Panax ginseng samples aged from 1 to 6 years. Multivariate
statistical methods such as principal component analysis and hierarchical clustering analysis were used to compare the derived
patterns among the samples. The data set was subsequently applied to various metabolite selection methods for sophisticated
classification with the optimal number of metabolites. The results showed variations in accuracy among the classification methods
for the samples of different ages, especially for those aged 4, 5, and 6 years. This proposed analytical method coupled with
multivariate analysis is fast, accurate, and reliable for discriminating the cultivation ages of P. ginseng samples and is a potential tool to
standardize quality control in the P. ginseng industry.
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’ INTRODUCTION

Panax ginseng C.A. Meyer is an important and widely used
medicinal herb. It is traditionally used as a panacea because of its
replenishing and tonic functions. Furthermore, its various bio-
logical and pharmacological activities to increase resistance to
physical, chemical, and biological stress and boost general vitality
have been reported on the basis of studies of its major active
constituents, ginsenosides. More than 40 ginsenosides have been
isolated and identified, and they are mainly derived from the
P. ginseng root, which is considered to be the main part for
medicinal purposes.1�3

Many studies have demonstrated quality variations in Panax
according to species, geographical origins, cultivation ages, and
various environmental conditions.3�7 Research on different
cultivation ages has shown that the components of this herb
vary according to its age, and so do its value and quality.
However, ginseng age can hardly be determined by the herb’s
physical appearance alone. Such age determination led to the
consumption of incorrectly identified forms of P. ginseng, im-
proper use, and undesirable effects, especially for ginseng of
cultivation ages 4, 5, and 6 years, which are themost in demand in
the market. Therefore, a reliable method to discriminate the
cultivation ages of P. ginseng is required for quality control of this
medicinal herb and prevention of its adulteration in the market.

Metabolomics, a fine combination of analytical and statistical
techniques, provides major insights into the similarities and
differences of samples in various environmental conditions by
quantitatively and qualitatively measuring the dynamic range of
metabolites in organisms. The diversemetabolome data obtained

by using this approach enables comparison among samples based
on multivariate statistical methods such as principal component
analysis (PCA) and hierarchical clustering analysis (HCA).
Metabolomics has been applied to research on natural products
in various ways, especially for quality control of medicinal
plants.8�10 Metabolomic approaches based on various analytical
techniques, including gas chromatography�mass spectrometry
(GC-MS), liquid chromatography�mass spectrometry (LC-MS),
and nuclear magnetic resonance (NMR), have been applied for
metabolite profiling of ginseng extracts.11�17 In particular, there
are several reports of differences among cultivation ages of
ginseng revealed by GC-MS and 1H NMR analyses, but the
results were limited to certain ages and not applicable to all ages
from 1 to 6 years.18�20

Here, we show the combined application of ultraperformance
liquid chromatography (UPLC) for analysis of nonvolatile
compounds of ginseng and quadrupole time-of-flight mass
spectrometry (Q-Tof MS) for obtaining multiple levels of
structural information to discriminate the cultivation ages of
P. ginseng samples aged from 1 to 6 years. This combination offers
high selectivity, sensitivity, and accuracy for nontargeted analysis
of nonvolatile compounds in ginseng. The analyzed metabolites
pass through several computational stages such as raw data
generation, data treatment, and metabolite selection to derive
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the best result for discriminating sample groups. Various meta-
bolite selection methods, including random forest (RF), predic-
tion analysis of microarray (PAM), and partial least squares-
discriminant analysis (PLS-DA), have been applied to improve
the interpretability of age discrimination data. These statistical
processes play an important role in metabolomic investigation
for the effective discrimination of samples and identification of
marker metabolites representing sample groups.

’MATERIALS AND METHODS

Reagents. Acetonitrile and methanol for the preparation and
analysis of samples were purchased from Honeywell Birdick & Jackson
(Muskegon, MI). Purified water was obtained from an aqua MAX-ultra
system (Young Lin, Anyang, Korea). Leucine-enkephalin and formic
acid were purchased from Sigma-Aldrich (St. Louis, MO) and Duksan
(Seoul, Korea), respectively. The reference solution was 50 pg/μL
leucine-enkephalin in 50:50 acetonitrile/water with 0.1% formic acid.
All solvents and samples were filtered through 0.2 μmmembrane filters
before analysis.
Sample Preparation. P. ginseng samples for this study were

cultivated for 6 years under a regulated system by the Rural Develop-
ment Administration, Suwon, Republic of Korea. Voucher specimens
were deposited at the School of Life Sciences and Biotechnology, Korea
University, Seoul, Korea. The main root of P. ginseng was cut and freeze-
dried (Eyela, Tokyo, Japan). For the UPLC-Q-Tof MS analyses, ginseng
samples were extracted with an optimized method for detecting diverse
ginseng metabolites.11 Then, 5 mg of each powdered P. ginseng sample

was subjected to ultrasonic extraction in 500 μL of 70% MeOH for
20 min. After extraction, the samples were centrifuged at 12000 rpm for
20 min, and the supernatant was filtered through a 0.2 μm membrane
filter. The extracts were then dissolved with 50%MeOH to obtain a final
concentration of 2 mg/mL. For reliable results, 10 replicates of each
sample group aged from 1 to 6 years were prepared.
UPLC-Q-Tof MS Analysis. The samples were analyzed by using an

Acquity UPLC system (Waters, Milford, MA) with a Micromass Q-Tof
Micro mass spectrometer (Waters, Manchester, U.K.). An Acquity
UPLC BEH C18 column (2.1 � 100 mm, 1.7 μm) was used to perform
the chromatographic separation of 5 μL of each sample injected into a
gradient system at a flow rate of 500 μL/min. The mobile phase
consisted of 0.1% formic acid in water (A) and 0.1% formic acid in
acetonitrile (B). The starting eluent was 10% B. Its proportion was held
constant for 0.5 min, increased linearly to 30% from 0.5 to 2.5 min, to
60% from 2.5 to 6 min, and to 90% from 6 to 9 min, held constant at
100% until 10.5 min, returned to the initial composition (10% B) at 10.5
min, and then held constant for 4.5 min to re-equilibrate the column.
This UPLC elution condition was optimized to detect the maximal
number of metabolites in P. ginseng, especially to separate ginsenosides
for identifying markers. The column and sample managers were main-
tained at 35 and 15 �C, respectively. The mass spectrometer was
operated in negative ion mode and set to the total ion chromatogram
(TIC) mode. The optimized MS conditions were as follows: capillary
voltage of 2800 V, cone voltage of 35 V, source temperature of 100 �C,
desolvation temperature of 250 �C, and desolvation gas flow rate of 600
L/h. To ensure that mass was measured accurately, leucine-enkephalin
was used as the reference lock-mass compound at a concentration of

Figure 1. HCA dendrogram of Panax ginseng extracts aged from 1 to 6 years with detected metabolites (A) and selected metabolites (B).
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500 pg/μL at a flow rate of 2μL/min, and the [M�H]� ion at 554.2615
Da was detected over 15 min of analysis.
Metabolite Profiling. The developed UPLC-Q-Tof MS method

was used to analyze 60 samples of P. ginseng main root extracts. For
metabolite profiling, 5 μL of each sample was introduced in the UPLC
system, and 20% acetonitrile was used as a blank sample for every five
samples to prevent interference among the samples.
Raw Data Generation. The metabolites acquired by UPLC-

Q-Tof MS-based metabolomic profiling were analyzed with MassLynx
version 4.1 (Waters, Manchester, U.K.). Chromatographic data were
preprocessed and normalized so that all samples could be compared in
the same condition. Retention times (RT) of 1�10.5 min, mass range
from 200 to 1500Da, mass tolerance of 0.05 ppm, noise elimination level
of 6.00, minimum intensity of 15%, and RT tolerance of 0.01 min were
set to align the peak RT and calculate the peak intensity of each sample.
The intensities of all detected peaks in a single sample were calculated on
the basis of both RT andm/z data of each peak, and the ion intensities of
each peak were normalized against the sum of the peak intensities in each
sample by using the MarkerLynx XS Application Manager (Waters,
Milford, MA). Every sample was applied to this raw data-generation
process to enable data treatment, metabolite selection, and multivariate
analysis.
Data Treatment. The generated raw data were applied to a data

treatment process for dealing with missing values and conversion to a
proper data set for classification. First, metabolites having >75% of the
number of zero values across all samples were eliminated by assuming
that they did not possess specific patterns and influence to characterize

the samples. Second, to reduce heteroscedasticity, zero values in the data
set except the eliminated metabolites were replaced with the smallest
value larger than zero to fit the further data treatment. Log transforma-
tion with two bases was used to even the importance of each metabolite
regardless of the amount in the samples so that all metabolites were
equally evaluated over the data set for the data analysis. Third, the values
were replaced with k-nearest neighbor imputation providing accurate
estimation with a substantial and delicate approach to interpolate
missing data.21 Finally, the data set was normalized by l2 norm for
unifying the influence of each sample and scaled by unit variance for
unifying the influence of each metabolite so that correlated samples
could be connected to each other.22 A more detailed description of each
data treatment process is in the Supporting Information.
Metabolite Selection. A growing concern to obtain a desirable

result is the identification of metabolites relevant to discrimination.
Total metabolites processed according to specific data treatment
procedures are used as potential targets for discrimination. However,
the classification of samples with a massive volume of data is quite
challenging because numerous metabolites are detected by metabolome
analysis, especially UPLC-Q-Tof MS-based analysis. To decrease the
sample size and improve data interpretability by selecting influential
metabolites within the processed metabolite list for discrimination of
samples, the following classification methods were used: RF, PAM, and
PLS-DA. Each method has its unique technique to select optimal
numbers of metabolites having high significance to discriminate. RF is
a classification method based on decision tree learning as an algorithm
developed by Breiman.23 It uses random selection of metabolites in a

Figure 2. HCA dendrogram of Panax ginseng extracts aged from 4 to 6 years with detected metabolites (A) and selected metabolites (B).
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data set and forms classification trees, a forest, and the forest predicts the
class of a new sample by deciding how closely related the sample and the
tree are across all trees. PAM is a centroid classificationmethod using the
nearest shrunken centroid methodology proposed by Narashiman.24 It
calculates a standardized centroid for each class and chooses the class of a
new sample by measuring its distance to the class centroid. PLS-DA is a
dimension reduction method based on both group and metabolite
information.25 It finds new components in an independent metabolite
space attempting tomaximize the separation between groups of samples.
In addition, to enhance the classification accuracy and prevent
data overfitting, data validation and selection of the optimal number
of metabolites for each classification method are required.26 In this
experiment, we used backward metabolite elimination to choose the
optimal number of metabolites and 10-fold cross-validation (CV) to
maximize the classification accuracy. In the CV procedure, the samples
were randomly divided into 10 equal parts, and a model was built by
using 9 of the 10 CV groups as training data. The remaining part was

used as test data by fitting to the resulting model to calculate the error
rate and predict the accuracy of each class.27 The details of each
classification method and backward selection are further described in
the Supporting Information.
Multivariate Analysis. All processed data of the P. ginseng samples

were analyzed by multivariate statistical techniques such as PCA and
HCA to evaluate the similarities and differences of the tested samples
with the MarkerLynx XS Application Manager and R+ package
(R Foundation for Statistical Computing, Vienna, Austria), respectively.
PCA is an unsupervised method for pattern analysis and the predomi-
nantly used multivariate statistical method to visualize all acquired data
in two- or three-dimensional score plots by reducing all detected
metabolites to several new principal components.10 HCA is a clustering
method to compare patterns of similarities and dissimilarities by
measuring distances among samples, and a dendrogram represents the
relationships among samples.10

Table 1. Cross-Validation Accuracy of Each Age of Panax ginseng Ranging from 1 to 6 Years by Different Classification Methods

CV accuracy (n = 59)

classification method no. of selected metabolites 1 year 2 years 3 years 4 years 5 years 6 years mean

RF 119 1.000 1.000 1.000 0.998 0.900 0.948 0.974

PAM 1146 1.000 0.900 1.000 0.900 0.796 0.966 0.926

PLS-DA 198 1.000 1.000 1.000 1.000 0.996 1.000 0.999

Figure 3. Mean accuracy of three different classification methods (RF, PAM, and PLS-DA) to select the optimal number of metabolites to discriminate
ages of Panax ginseng ranging from 1 to 6 years (A) and from 4 to 6 years (B).
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’RESULTS AND DISCUSSION

Metabolite Profiling and Data Processing. The chromato-
graphic results of UPLC-Q-TofMS for analyzing the 60 P. ginseng
samples have barely shown the visible difference of ages
(Supporting Information, Figure S1). Consequently, all detected
metabolites were processed for comprehensive evaluation of the
samples. The chromatographic data were transferred to a 3-di-
mensional data set composed of RT, m/z, and ion intensity to
align the data, which is one of the most important tasks for
multivariate analysis to obtain precise and stable results from all
analyzed samples. The aligned data were then processed through
a series of data treatment procedures to refine metabolites used
for classification of P. ginseng age.
Multivariate Analysis of Detected Metabolites. The data

treatment process identified 1361 metabolites from the 60
P. ginseng samples. By PCA, one of the 1-year-old samples was
excluded as an outlier, which is identifiable by its location outside
the 2-dimensional tolerance ellipse plot.21 Therefore, 59 samples,
which are located inside the ellipse, were further analyzed. As
HCA explains the hierarchy of clusters illustrating the relation-
ships among samples, the samples aged 1 and 2 years, which were
the closest, merged into clusters (Figure 1A). Similarly, the
samples aged 3 and 4 years as well as those aged 5 and 6 years
merged into clusters. Moreover, the samples aged 3 and 4 years
progressively merged with those aged 5 and 6 years to form a
bigger cluster that finally merged with the cluster of samples aged
1 and 2 years to create a whole tree structure. However, the HCA
dendrogram showed that the 1�3-year-old ginseng samples
clustered clearly, but several samples aged 4, 5, and 6 years were
mixed with one another. This confirms that ginseng samples aged
from 1 to 3 years can be clearly discriminated according to their
detected metabolites, whereas samples aged from 4 to 6 years
cannot be discriminated in this manner.
To clearly discriminate the cultivation ages that are most in

demand, data from 30 samples, aged from 4 to 6 years, were
separated from the data of all samples and the relationships were
compared. By additional analysis, 1155 metabolites were de-
tected from these ginseng samples, and multivariate analysis was
performed by using these metabolites. The HCA dendrogram
showed that the 4- and 5-year-old samples merged as clusters
and the 6-year-old samples subsequently merged together
(Figure 2A). It is also observed that three samples aged 6 years
were mixed with those aged 5 years, which is similar to the HCA
result in Figure 1A. The 2-dimensional PCA score plots showing
clustering and scattering among the samples are shown in detail
in the Supporting Information (Figures S2 and S3). On the basis
of the 2-dimensional PCA score plots, we further processed
the 3-dimensional PCA score plots that allow us to more easily
see the distinction of clustering patterns among the samples
[Supporting Information, Figures S4 (A) and S5 (A)].
Metabolite Selection for Classification. To identify the

relevant metabolites for age discrimination of P. ginseng, we
applied classification methods reducing the large amount of data
to the minimal size, thereby increasing the accuracy for age
discrimination. For example, in the case of the 59 ginseng
samples, although 1361 metabolites were detected, not all were
influential in discriminating sample ages. Only some affect the
classification of ginseng ages; others can even interrupt the
classification and should be eliminated to increase the accuracy.
The results of RF, PAM, and PLS-DA were compared; for the

59 P. ginseng samples, these methods chose 119, 1146, and 198

metabolites from the 1361 metabolites, respectively. The CV
accuracy of each classification method for each age ranged from
0.926 to 0.999 (Table 1). Especially, PLS-DA had 0.999 accuracy,
indicating that this classification method can discriminate the
ages of P. ginseng with 99.9% accuracy. Although RF and PAM
were less accurate, their accuracies are sufficiently high for age
discrimination. The mean accuracy of each classification method
shown in Figure 3A explains how we selected the optimal
number of metabolites, marked with a red dot for the highest
point of accuracy. Moreover, the confusion matrices shown in
Table 2 indicate the prediction accuracy of each classification
method based on 10-fold cross-validation. The numbers in rows
indicate multiples of the number of samples and 50 times iteration.
As an example, the numbers in the rows and columns of Table 2C

Table 2. Confusion Matrices between True Class and Pre-
dicted Class of Each Age of Panax ginseng Ranging from 1 to 6
Years by Different Classification Methods [RF (A), PAM (B),
and PLS-DA (C)]

predicted class

true

class 1 year 2 years 3 years 4 years 5 years 6 years

prediction

accuracy

(A) RF

1 year 450 0 0 0 0 0 1.000

2 years 0 500 0 0 0 0 1.000

3 years 0 0 500 0 0 0 1.000

4 years 0 0 0 499 1 0 0.998

5 years 0 0 0 9 450 41 0.900

6 years 0 0 0 0 26 474 0.948

(B) PAM

1 year 450 0 0 0 0 0 1.000

2 years 50 450 0 0 0 0 0.900

3 years 0 0 500 0 0 0 1.000

4 years 0 0 0 450 50 0 0.900

5 years 0 0 0 0 398 102 0.796

6 years 0 0 0 0 17 483 0.966

(C) PLS-DA

1 year 450 0 0 0 0 0 1.000

2 years 0 500 0 0 0 0 1.000

3 years 0 0 500 0 0 0 1.000

4 years 0 0 0 500 0 0 1.000

5 years 0 0 2 0 498 0 0.996

6 years 0 0 0 0 0 500 1.000

Table 3. Cross-Validation Accuracy of Each Age of Panax
ginseng Ranging from 4 to 6 Years by Different Classification
Methods

CV accuracy (n = 30)

classification

method

no. of selected

metabolites 4 years 5 years 6 years mean

RF 73 0.995 0.804 0.974 0.924

PAM 725 1.000 0.999 0.879 0.959

PLS-DA 605 1.000 1.000 1.000 1.000
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explain how accurately the test samples were predicted by PLS-DA
and the resultant prediction accuracy. The samples of all the ages
except 5 years were exactly matched with the true class having 100%
accuracy. Finally, 301 metabolites satisfying at least two or all the
classification methods were used for further statistical analysis by
improving the data interpretability.
For the 4�6-year-old ginseng samples, RF, PAM, and PLS-DA

selected 73, 725, and 605 metabolites from 1155 metabolites,
respectively. The CV accuracy ranged from 0.924 to 1.000, and
PLS-DA had 1.000 accuracy for all ages (Table 3). This means
that 100% classification of 4-, 5-, and 6-year-old ginseng samples
was possible by PLS-DA in this data set. The mean accuracy of
each classificationmethod is shown in Figure 3B, and the selected
numbers of metabolites with the highest accuracy are marked
with a red dot. Confusion matrices were indicated with the same
method as already described (Table 4), and, finally, 606 selected
metabolites were used for further multivariate analysis. The
margin accuracy showing variations in accuracy among the ages
of each method is indicated in the Supporting Information
[Figures S6 (A) and (B)].

Multivariate Analysis of SelectedMetabolites.To confirm the
importance of metabolite selection for discrimination, the 301 and
606 metabolites selected from 59 and 30 samples, respectively, by
RF, PAM, and PLS-DAwere used for PCA andHCA. For the 1�6-
year-old ginseng samples, the 2-dimensional PCAplots with the 301
selected metabolites showed better clustering than those with the
total metabolites (Figure 4). PC 1 and PC 2 demonstrated 50.89%
of the total variance, indicating that the data interpretability with the
selected metabolites improved through the metabolite selection
process. TheHCAdendrogram indicatedmore organized hierarchy
by merging clusters according to the ages and shortened distance
among the samples than the one with the total metabolites
(Figure 1B). For the 4�6-year-old ginseng samples, the 2-dimen-
sional PCA score plot with the 606 selected metabolites indicated
higher variance of 37.02% than the PCA result with the total
metabolites (Figure 5), and the HCA dendrogram in Figure 2B
described successful discrimination among the ages of 4, 5, and 6
years. These HCA results with the selected metabolites in compar-
ison with the total metabolites confirmed the importance of
the metabolite selection process for more precise classification
(Figures 1 and 2). More obvious results can be observed by the
3-dimensional PCA score plots in Figures S4 (B) and S5 (B) of
the Supporting Information.
In conclusion, this study presents a novel finding that different

cultivation ages of P. ginseng can be successfully discriminated by
using the proposed UPLC-Q-Tof MS-based metabolomic ap-
proach together with precise statistical analysis. By this approach,
ginseng samples aged 4, 5, and 6 years, which are the most in
demand in the ginseng market, can be precisely classified on the
basis of selected metabolites. Further investigations on various
ginseng samples that show environmental variations should be
performed to build a more extensive and robust model. More-
over, this method, along with the identification of potential
biomarkers for each age, could be used as an effective tool for
quality control in the P. ginseng industry.

’ASSOCIATED CONTENT

bS Supporting Information. The statistical methods for data
treatment and metabolite selection used in this study are described
in detail. This material is available free of charge via the Internet at
http://pubs.acs.org.

Table 4. Confusion Matrices between True Class and Pre-
dicted Class of Each Age of Panax ginseng Ranging from 4 to 6
Years by Different Classification Methods [RF (A), PAM (B),
and PLS-DA (C)]

predicted class

true class 4 years 5 years 6 years prediction accuracy

(A) RF

4 years 995 5 0 0.995

5 years 125 804 71 0.804

6 years 3 23 974 0.974

(B) PAM

4 years 1000 0 0 1.000

5 years 0 999 1 0.999

6 years 0 121 879 0.879

(C) PLS-DA

4 years 1000 0 0 1.000

5 years 0 1000 0 1.000

6 years 0 0 1000 1.000

Figure 5. PCA 2D score plot of Panax ginseng extracts aged from 4 to
6 years with selected metabolites: 4Y, 5Y, and 6Y represent 4-, 5-, and
6-year-old ginseng, respectively.

Figure 4. PCA 2D score plot of Panax ginseng extracts aged from 1 to 6
years with selected metabolites: 1Y, 2Y, 3Y, 4Y, 5Y, and 6Y represent
1-, 2-, 3-, 4-, 5-, and 6-year-old ginseng, respectively.
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